Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Clin Chim Acta ; 523: 185-190, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1415246

ABSTRACT

BACKGROUND: Endothelial dysfunction, a major complication of SARS-CoV-2 infectionplaying a key-role in multi-organ damage, carries high risk of mortality. AIM: To investigate the potential role of Mid-Regional pro-Adrenomedullin (MR-proADM) in detecting endothelial damage with a view to stratifying the risk of adverse events (length of stay, death, admission in Intensive Care Unit) and/or disease resolution. MATERIALS AND METHODS: In 135 consecutive patients with SARS-CoV-2 infection, MR-proADM was measured in EDTA-K2 plasma samples using B.R.A.H.M.S. KRYPTOR® COMPACT Plus method (Thermo Fisher Scientific, Hennigsdorf, Germany) RESULTS: Patients were subdivided into three groups based on their MR-proADM value (nmol/L): 1 (n = 20, MR-proADM ≤ 0.55); 2 (n = 82, 0.55 < MR-proADM ≤ 1.50); 3 (n = 33, MR-proADM > 1.50). The higher the MR-proADM value, the greater the patients' age, the more frequent the occurrence of pneumonia, the requiring of more aggressive treatment, the longer the hospitalization and the more frequent a fatal event. Significant differences were found between the three groups for MR-proADM, White-blood cell count, Neutrophil count, D-dimer, C-reactive Protein, Procalcitonin and hs-Troponin I. At logistic regression,it was found that MR-proADM and Log10D-dimer were the most significant predictors of adverse events. CONCLUSION: The findings made in the present study highlight the relevance of MR-proADM values in providing clinically useful information, particularly for stratifying COVID-19 patients according to the risk of a more severe form of disease and to the development of adverse events.


Subject(s)
Adrenomedullin , COVID-19 , Endothelium/physiopathology , Protein Precursors , Adrenomedullin/blood , Biomarkers , COVID-19/diagnosis , Endothelium/virology , Humans , Prognosis , Protein Precursors/blood , SARS-CoV-2
2.
Mayo Clin Proc ; 96(12): 3099-3108, 2021 12.
Article in English | MEDLINE | ID: covidwho-1364351

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible virus with significant global impact, morbidity, and mortality. The SARS-CoV-2 virus may result in widespread organ manifestations including acute respiratory distress syndrome, acute renal failure, thromboembolism, and myocarditis. Virus-induced endothelial injury may cause endothelial activation, increased permeability, inflammation, and immune response and cytokine storm. Endothelial dysfunction is a systemic disorder that is a precursor of atherosclerotic vascular disease that is associated with cardiovascular risk factors and is highly prevalent in patients with atherosclerotic cardiovascular and peripheral disease. Several studies have associated various viral infections including SARS-CoV-2 infection with inflammation, endothelial dysfunction, and subsequent innate immune response and cytokine storm. Noninvasive monitoring of endothelial function and identification of high-risk patients who may require specific therapies may have the potential to improve morbidity and mortality associated with subsequent inflammation, cytokine storm, and multiorgan involvement.


Subject(s)
COVID-19 , Endothelium , COVID-19/immunology , COVID-19/physiopathology , Cytokine Release Syndrome/virology , Disease Management , Endothelium/physiopathology , Endothelium/virology , Humans , Multiple Organ Failure/etiology , Multiple Organ Failure/immunology , SARS-CoV-2/physiology , Systemic Inflammatory Response Syndrome/prevention & control , Systemic Inflammatory Response Syndrome/virology
3.
Lancet Respir Med ; 9(6): 622-642, 2021 06.
Article in English | MEDLINE | ID: covidwho-1219780

ABSTRACT

The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.


Subject(s)
COVID-19 , Multiple Organ Failure , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , Endothelium/physiopathology , Humans , Immunity , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Patient Acuity , Severity of Illness Index
4.
Curr Pain Headache Rep ; 25(3): 19, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1100995

ABSTRACT

PURPOSE OF REVIEW: This review provides an updated discussion on the clinical presentation, diagnosis and radiographic features, mechanisms, associations and epidemiology, treatment, and prognosis of posterior reversible encephalopathy syndrome (PRES). Headache is common in PRES, though headache associated with PRES was not identified as a separate entity in the 2018 International Classification of Headache Disorders. Here, we review the relevant literature and suggest criteria for consideration of its inclusion. RECENT FINDINGS: COVID-19 has been identified as a potential risk factor for PRES, with a prevalence of 1-4% in patients with SARS-CoV-2 infection undergoing neuroimaging, thus making a discussion of its identification and treatment particularly timely given the ongoing global pandemic at the time of this writing. PRES is a neuro-clinical syndrome with specific imaging findings. The clinical manifestations of PRES include headache, seizures, encephalopathy, visual disturbances, and focal neurologic deficits. Associations with PRES include renal failure, preeclampsia and eclampsia, autoimmune conditions, and immunosuppression. PRES is theorized to be a syndrome of disordered autoregulation and endothelial dysfunction resulting in preferential hyperperfusion of the posterior circulation. Treatment typically focuses on treating the underlying cause and removal of the offending agents.


Subject(s)
Endothelium/physiopathology , Headache/physiopathology , Posterior Leukoencephalopathy Syndrome/physiopathology , Seizures/physiopathology , Vision Disorders/physiopathology , Acute Chest Syndrome/epidemiology , Aminolevulinic Acid/analogs & derivatives , Anemia, Sickle Cell/epidemiology , Autoimmune Diseases/epidemiology , Blood-Brain Barrier/metabolism , Brain Edema/diagnostic imaging , Brain Edema/physiopathology , COVID-19/epidemiology , Cerebrovascular Circulation/physiology , Cytokines/metabolism , Eclampsia/epidemiology , Female , Homeostasis/physiology , Humans , Hypertension/physiopathology , Magnetic Resonance Imaging , Posterior Leukoencephalopathy Syndrome/diagnostic imaging , Posterior Leukoencephalopathy Syndrome/epidemiology , Posterior Leukoencephalopathy Syndrome/therapy , Pre-Eclampsia/epidemiology , Pregnancy , Prognosis , Renal Insufficiency/epidemiology , SARS-CoV-2 , Vasospasm, Intracranial/physiopathology
5.
Hypertens Res ; 44(4): 386-398, 2021 04.
Article in English | MEDLINE | ID: covidwho-1065860

ABSTRACT

This review assesses markers of endothelial dysfunction (ED) associated with the maternal syndrome of preeclampsia (PE). We evaluate the role of antiretroviral therapy (ART) in human immunodeficiency virus (HIV)-infected preeclamptic women. Furthermore, we briefly discuss the potential of lopinavir/ritonavir (LPV/r), dolutegravir (DTG) and remdesivir (RDV) in drug repurposing and their safety in pregnancy complicated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In HIV infection, the trans-activator of transcription protein, which has homology with vascular endothelial growth factor, impairs angiogenesis, leading to endothelial injury and possible PE development despite neutralization of their opposing immune states. Markers of ED show strong evidence supporting the adverse role of ART in PE development and mortality compared to treatment-naïve pregnancies. Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2 infection, exploits angiotensin-converting enzyme 2 (ACE 2) to induce ED and hypertension, thereby mimicking angiotensin II-mediated PE in severe cases of infection. Upregulated ACE 2 in pregnancy is a possible risk factor for SARS-CoV-2 infection and subsequent PE development. The potential effectiveness of LPV/r against COVID-19 is inconclusive; however, defective decidualization, along with elevated markers of ED, was observed. Therefore, the safety of these drugs in HIV-positive pregnancies complicated by COVID-19 requires attention. Despite the observed endothelial protective properties of DTG, there is a lack of evidence of its effects on pregnancy and COVID-19 therapeutics. Understanding RDV-ART interactions and the inclusion of pregnant women in antiviral drug repurposing trials is essential. This review provides a platform for further research on PE in the HIV-COVID-19 syndemic.


Subject(s)
COVID-19/complications , Endothelium/physiopathology , HIV Infections/complications , Pre-Eclampsia/etiology , Adult , COVID-19/physiopathology , COVID-19/therapy , Female , HIV Infections/physiopathology , HIV Infections/therapy , Humans , Infant, Newborn , Pandemics , Pre-Eclampsia/physiopathology , Pre-Eclampsia/therapy , Pregnancy
7.
Stroke ; 51(10): 3156-3168, 2020 10.
Article in English | MEDLINE | ID: covidwho-748838

ABSTRACT

Understanding the relationship between infection and stroke has taken on new urgency in the era of the coronavirus disease 2019 (COVID-19) pandemic. This association is not a new concept, as several infections have long been recognized to contribute to stroke risk. The association of infection and stroke is also bidirectional. Although infection can lead to stroke, stroke also induces immune suppression which increases risk of infection. Apart from their short-term effects, emerging evidence suggests that poststroke immune changes may also adversely affect long-term cognitive outcomes in patients with stroke, increasing the risk of poststroke neurodegeneration and dementia. Infections at the time of stroke may also increase immune dysregulation after the stroke, further exacerbating the risk of cognitive decline. This review will cover the role of acute infections, including respiratory infections such as COVID-19, as a trigger for stroke; the role of infectious burden, or the cumulative number of infections throughout life, as a contributor to long-term risk of atherosclerotic disease and stroke; immune dysregulation after stroke and its effect on the risk of stroke-associated infection; and the impact of infection at the time of a stroke on the immune reaction to brain injury and subsequent long-term cognitive and functional outcomes. Finally, we will present a model to conceptualize the many relationships among chronic and acute infections and their short- and long-term neurological consequences. This model will suggest several directions for future research.


Subject(s)
Atherosclerosis/epidemiology , Infections/epidemiology , Stroke/epidemiology , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/physiopathology , Atherosclerosis/immunology , Atherosclerosis/physiopathology , Bacteremia/epidemiology , Bacteremia/immunology , Bacteremia/physiopathology , Betacoronavirus , COVID-19 , Chronic Disease , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/physiopathology , Cytomegalovirus Infections/epidemiology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/physiopathology , Endothelium/physiopathology , HIV Infections/epidemiology , HIV Infections/immunology , HIV Infections/physiopathology , Humans , Immunocompromised Host/immunology , Infections/immunology , Infections/physiopathology , Inflammation/immunology , Influenza, Human/epidemiology , Influenza, Human/immunology , Influenza, Human/physiopathology , Pandemics , Platelet Activation , Platelet Aggregation , Pneumonia/epidemiology , Pneumonia/immunology , Pneumonia/physiopathology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/physiopathology , Prognosis , Risk Factors , SARS-CoV-2 , Stroke/immunology , Thrombosis/epidemiology , Thrombosis/immunology , Varicella Zoster Virus Infection/epidemiology , Varicella Zoster Virus Infection/immunology , Varicella Zoster Virus Infection/physiopathology
8.
Curr Hypertens Rep ; 22(9): 63, 2020 08 27.
Article in English | MEDLINE | ID: covidwho-734060

ABSTRACT

PURPOSE OF REVIEW: To review current literature on endothelial dysfunction with previous coronaviruses, and present available data on the role of endothelial dysfunction in coronavirus disease-2019 (COVID-19) infection in terms of pathophysiology and clinical phenotype RECENT FINDINGS: Recent evidence suggests that signs and symptoms of severe COVID-19 infection resemble the clinical phenotype of endothelial dysfunction, implicating mutual pathophysiological pathways. Dysfunction of endothelial cells is believed to mediate a variety of viral infections, including those caused by previous coronaviruses. Experience from previous coronaviruses has triggered hypotheses on the role of endothelial dysfunction in the pathophysiology of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which are currently being tested in preclinical and clinical studies. Endothelial dysfunction is the common denominator of multiple clinical aspects of severe COVID-19 infection that have been problematic for treating physicians. Given the global impact of this pandemic, better understanding of the pathophysiology could significantly affect management of patients.


Subject(s)
Coronavirus Infections/physiopathology , Endothelium/physiopathology , Pneumonia, Viral/physiopathology , Betacoronavirus , COVID-19 , Endothelial Cells/pathology , Endothelium/virology , Humans , Pandemics , SARS-CoV-2
9.
Am J Physiol Endocrinol Metab ; 319(1): E105-E109, 2020 07 01.
Article in English | MEDLINE | ID: covidwho-382078

ABSTRACT

Recent reports have shown a strong association between obesity and the severity of COVID-19 infection, even in the absence of other comorbidities. After infecting the host cells, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause a hyperinflammatory reaction through the excessive release of cytokines, a condition known as "cytokine storm," while inducing lymphopenia and a disrupted immune response. Obesity is associated with chronic low-grade inflammation and immune dysregulation, but the exact mechanisms through which it exacerbates COVID-19 infection are not fully clarified. The production of increased amounts of cytokines such as TNFα, IL-1, IL-6, and monocyte chemoattractant protein (MCP-1) lead to oxidative stress and defective function of innate and adaptive immunity, whereas the activation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome seems to play a crucial role in the pathogenesis of the infection. Endothelial dysfunction and arterial stiffness could favor the recently discovered infection of the endothelium by SARS-CoV-2, whereas alterations in cardiac structure and function and the prothrombotic microenvironment in obesity could provide a link for the increased cardiovascular events in these patients. The successful use of anti-inflammatory agents such as IL-1 and IL-6 blockers in similar hyperinflammatory settings, like that of rheumatoid arthritis, has triggered the discussion of whether such agents could be administrated in selected patients with COVID-19 disease.


Subject(s)
Coronavirus Infections/physiopathology , Obesity/virology , Pneumonia, Viral/physiopathology , Adaptive Immunity , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cytokine Release Syndrome/virology , Endothelium/physiopathology , Heart/physiopathology , Heart/virology , Humans , Immunity, Innate , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Oxidative Stress , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Risk Factors , SARS-CoV-2 , Thrombosis/physiopathology , Vascular Stiffness
SELECTION OF CITATIONS
SEARCH DETAIL